วันพฤหัสบดีที่ 13 กรกฎาคม พ.ศ. 2560

ระบบไฟฟ้าของรถไฟฟ้าและระบบอาณัติสัญญาณรถไฟ


ระบบอาณัติสัญญาณรถไฟ


ระบบอาณัติสัญญาณรถไฟ (Railway signalling system) เป็นระบบกลไก สัญญาณไฟ หรือระบบคอมพิวเตอร์ ในการเดินขบวนรถไฟเพื่อแจ้งให้พนักงานขับรถไฟทราบสภาพเส้นทางข้างหน้า และตัดสินใจที่จะหยุดรถ ชลอความเร็ว หรือบังคับทิศทาง ให้การเดินรถดำเนินไปได้อย่างปลอดภัย รวดเร็ว และมีประสิทธิภาพ โดยเฉพาะในการเดินรถสวนกันบนเส้นทางเดียว หรือการสับหลีกเพื่อให้รถไฟวิ่งสวนกันบริเวณสถานีรถไฟ หรือควบคุมรถไฟให้การเดินขบวนเป็นไปตามที่กำหนดไว้กรณีที่ใช้ระบบอาณัติสัญญาณแบบคอมพิวเตอร์
ระบบอาณัติสัญญาณรถไฟจะควบคุมและกำหนดทิศทางการเคลื่อนที่ และระยะเวลาในการเดินรถ ของขบวนรถที่อยู่บนทางร่วมเดียวกัน รวมทั้งการสับหลีกบริเวณสถานีรถไฟ โดยการทำงานของอุปกรณ์ต่างๆ ในระบบ จะออกแบบให้ทำงานสัมพันธ์กัน เพื่อให้พนักงานขับรถไฟสามารถตัดสินใจเดินรถได้อย่างมั่นใจ และไม่ให้เกิดความสับสน

ระบบอาณัติสัญญาณรถไฟในประเทศไทย[แก้]

ระบบอาณัติสัญญาณรถไฟในประเทศไทย ของการรถไฟแห่งประเทศไทย ออกแบบโดยคำนึงถึงความปลอดภัย สภาพภูมิประเทศ (ความลาดชัน, ทางโค้ง, สภาพราง) ความหนาแน่นของชุมชน และงบประมาณ โดยระบบที่ใช้มี 3 ประเภทดังนี้

สัญญาณไฟสี

มี 2 ระบบ คือ
  • ระบบไฟสีสองท่า ใช้ไฟ 2 สี 2 ดวง (แดง + เขียว) หรือ 3 ดวง คือ เขียว + แดง + เขียว ใช้ในเส้นทางที่รถวิ่งด้วยความเร็วต่ำ เสาสัญญาณจะมีเพียงเสาเข้าเขตใน และเสาออก
  • ระบบไฟสีสามท่า ใช้ในเส้นทางหลัก โดยจะมีเสาเตือน เสาเข้าเขตใน (มีไฟสีเหลือง) และมีไฟสีขาว 5 ดวงบอกการเข้าประแจของขบวนรถ หรือเป็นจอ LED บอกหมายเลขของทางหลีก
    • ระบบไฟสีสามท่า แบบมีเสาออกตัวนอกสุด
    • ระบบไฟสีสามท่า
    • ระบบไฟสีสามท่า แบบมีสัญญาณเข้าเขตนอก
แบ่งประเภทตามมาตรฐานของการรถไฟแห่งประเทศไทยได้เป็น

ก.1ก

ประแจกลไฟฟ้า ชนิดบังคับสัมพันธ์ด้วยรีเลย์ และสัญญาณไฟสี

ก.1ข

ประแจกลไฟฟ้า ชนิดบังคับด้วยคอมพิวเตอร์ และสัญญาณไฟสี

ก.2

ประแจกลหมู่ ชนิดบังคับด้วยเครื่องกลสายลวด และสัญญาณไฟสี
อาณัติสัญญาณประจำที่ชนิดหางปลา ที่สถานีรถไฟธนบุรี ซึ่งได้รับการอนุรักษ์ไว้
สัญญาณหางปลา จัดแสดงที่พิพิธภัณฑ์รถไฟแห่งชาติ ประเทศอังกฤษ

สัญญาณหางปลา

เป็นอาณัติสัญญาณแบบดั้งเดิม แต่มีความปลอดภัยสูง เช่นเดียวกับระบบอาณัติสัญญาณประจำที่ชนิดไฟสี

ก.3

ประแจกล ชนิดบังคับด้วยเครื่องกลสายลวด พร้อมสัญญาณหางปลา มีเสาแบบสมบูรณ์ ประกอบด้วยเสาเตือน เสาเข้าเขตใน เสาออก และเสาออกตัวนอกสุด

ก.4

ประแจกล ชนิดบังคับด้วยเครื่องกลสายลวด พร้อมสัญญาณหางปลา มีเสาไม่สมบูรณ์ ประกอบด้วยเสาเข้าเขตใน และเสาออก

ข.

ประแจกลเดี่ยว พร้อมสัญญาณหางปลาเข้าเขตใน

หลักเขตสถานี

ค.

หลักเขตสถานี จะใช้ในสถานีที่มีจำนวนขบวนรถเดินผ่านน้อย หรือสถานีที่มีการติดตั้งระบบอาณัติสัญญาณชนิดอื่นยังไม่สมบูรณ์ โดยหลักเขตสถานีจะตั้งแทนเสาเข้าเขตใน โดย พขร. จะต้องปฏิบัติตามสัญญาณมือ หรือสัญญาณวิทยุ จากนายสถานี

สัญญาณตัวแทน

เป็นสัญญาณที่แสดงท่าของสัญญาณต้นถัดไป ใช้ในกรณีที่เป็นทางโค้งไม่สามารถมองเห็นสัญญาณต้นหน้าในระยะไกลกว่า 1 กิโลเมตร
    • สัญญาณไฟเรียงเป็นแนวนอน หมายความว่า สัญญาณตัวหน้าแสดงท่าห้าม
    • สัญญาณไฟเรียงเป็นแนวนอนกะพริบ หมายความว่า สัญญาณตัวหน้าแสดงท่าระวัง
    • สัญญาณไฟเรียงเป็นแนวเฉียง หมายความว่า สัญญาณตัวหน้าแสดงท่าอนุญาต





                                                         ระบบไฟฟ้าของรถไฟฟ้า




SIEMENS Model 
 
ภายหลัง BTS ได้เพิ่มตู้รถไฟฟ้าจากแบบ 3 ตู้ เป็นแบบ 4 ตู้ต่อขบวน ทำให้ขบวนรถไฟฟ้า Siemens model ทั้ง 35 ขบวนได้กลายเป็นรถไฟฟ้าแบบ 4 ตู้ ซึ่งประกอบด้วย ตู้รถไฟฟ้ามีระบบขับเคลื่อน (Motored cars) ที่ด้านหน้าและท้ายของขบวนรถไฟฟ้า และ ตู้รถไฟฟ้าแบบไม่มีระบบขับเคลื่อน (Trailer cars) 2 ตู้อยู่ตรงกลางของขบวนรถไฟฟ้า ตามชนิดดังต่อไปนี้
1.ตู้รถไฟฟ้าแบบ A-Car มีระบบขับเคลื่อน (Motored cars) และห้องคนขับ (Driving Cab)
2.ตู้รถไฟฟ้าแบบ C-Car ไม่มีระบบขับเคลื่อน (trailer cars) และห้องคนขับ แต่มีแหล่งจ่ายไฟฟ้า (Power Supply) สำหรับ ระบบปรับอากาศ และระบบแสงสว่าง
 
   
 โดยที่ตู้รถไฟฟ้าแบบ C-car ที่เพิ่มเข้าไปใหม่นั้น เรียกว่า C1-car มีลักษณะเด่นที่แตกต่างจากเดิมคือ
  • เสาราวจับแบบ 3 ก้าน เพื่ออำนวยความสะดวกให้กับผู้โดยสารซึ่งจะมีราวจับเพิ่มมากขึ้น
  • เพิ่มพื้นที่สำหรับรถเข็นผู้พิการ พร้อมเข็มขัดนิรภัยสำหรับจับยึดรถเข็นผู้พิการและราวจับให้
  • มีการติดตั้งเครื่องแปลงพลังงานไฟฟ้าขนาดเล็กจาก 750 VDC เป็น 400 VAC เพื่อจ่ายให้กับอุปกรณ์เครื่องปรับอากาศภายในตู้โดยสารใหม่โดยเฉพาะ
  • มีการนำเอาระบบควบคุมการห้ามล้อแบบใหม่เรียกว่า EP2002 ซึ่งตัวอุปกรณ์จะรวมระบบการควบคุมด้วยลมและไฟฟ้าอยู่ในอุปกรณ์เดียวกัน
  • มีวงจรปรับอากาศ 2 วัฏจักร ใช้น้ำยาปรับอากาศ R407C
ลักษณะต่อพ่วงของรถไฟฟ้า 4 ตู้ คือ A-C-C1-A



ระบบขับเคลื่อนของรถไฟฟ้าได้รับแรงดันไฟฟ้ากระแสตรงขนาด 750 โวลท์ (DC Voltage) จากรางที่สาม (Third Rail Traction Power) ผ่านชุดแปลงกระแสไฟฟ้าสลับระบบขับเคลื่อน (Traction Convertor Units) เพื่อจ่ายไฟฟ้ากระแสสลับให้กับชุดมอเตอร์ขับเคลื่อนที่ติดตั้งอยู่บนเพลาล้อของรถ A-car ทั้งสองตู้ ในทำนองเดียวกันตู้รถไฟฟ้า C-car ทั้งสองตู้ตรงกลางได้รับแรงดันไฟฟ้ากระแสตรงขนาด 750 โวลท์จากรางที่สาม (Third Rail Traction Power) แปลงเป็นไฟฟ้ากระแสสลับ 3 เฟส 400 โวลท์ และไฟฟ้ากระแสตรง 110 โวลท์ เพื่อใช้ในระบบปรับอากาศ และชาร์จแบตเตอรี่ ตามลำดับ
ขบวนรถไฟฟ้า 4 มีความยาวตลอดทั้งขบวน 86.6 เมตร กว้าง 3.12 เมตร รองรับผู้โดยสารได้สุงสุดจำนวน 1490 คน (มีผู้โดยสารนั่งเต็มทุกที่นั่ง และ ผู้โดยสารยื่น) ที่น้ำหนักบรรทุก (Load Condition) 8 คน ต่อ ตารางเมตร จำนวนที่นั่งผู้โดยสาร 42 ที่นั่ง ต่อ ตู้ และ 168 ที่นั่งทั้งขบวน มีประตูโดยสารเลื่อนปิดเปิดด้านนอกตัวรถ (Sliding door) ควบคุมการทำงานด้วยระบบควบคุมกับมอเตอร์ไฟฟ้า มีความกว้างเมื่อเปิดสุด 1.4 เมตร จำนวน 16 บานต่อด้าน ตัวรถทำด้วยเหล็กปลอดสนิม ติดตั้งระบบปรับอากาศ พร้อมหน้าต่างชนิดกันแสง
 
 


ระบบไฟฟ้าแรงดันต่ำสุดไม่ถาวรแรงดันต่ำสุดถาวรแรงดันใช้งานแรงดันสูงสุดถาวรแรงดันสูงสุดไม่ถาวร
600 V ไฟฟ้ากระแสตรง400 V400 V600 V720 V800 V
750 V DC500 V500 V750 V900 V1,000 V
1,500 V DC1,000 V1,000 V1,500 V1,800 V1,950 V
3 kV DC2 kV2 kV3 kV3.6 kV3.9 kV
15 kV AC, 16.7 Hz11 kV12 kV15 kV17.25 kV18 kV
25 kV AC, 50 Hz

กระแสสลับ

ระบบจ่ายกระแสไฟฟ้า AC จะเป็นแบบเหนือศีรษะได้อย่างเดียว กระแสสลับสามารถเปลี่ยนแรงดันไฟฟ้าให้ลดลงได้ภายในหัวรถจักร ใช้แรงดันไฟฟ้าที่สูงมากเพื่อให้มีกระแสน้อยลง สายส่งจึงมีขนาดเล็กลง ซึ่งหมายถึงการสูญเสียพลังงานน้อยลงไปตามทางยาวของเส้นทางรถไฟ

ระบบกระแสสลับหลายเฟส

รถไฟกระแสไฟฟ้า AC 3 เฟสถูกใช้ในอิตาลี สวิตเซอร์แลนด์และสหรัฐอเมริกาในต้นศตวรรษที่ 20 ระบบในตอนต้นใช้
คลื่นความถี่ต่ำ (16⅔ Hz) และแรงดันไฟฟ้าที่ค่อนข้างต่ำ (3,000 หรือ 3,600 โวลต์) ระบบจะสร้างพลังงานจากการเบรก ป้อนกลับไปยังระบบ จึงมีความเหมาะสมอย่างยิ่งสำหรับรถไฟที่ใช้ในเขตภูเขา (เงื่อนไขคือหัวรถจักรอีกสายสามารถใช้พลังนี้ได้) ระบบมีข้อเสียของการที่ต้องมีสอง (หรือสาม) ตัวนำเหนือศีรษะที่แยกเป็นสัดส่วนบวก return path ผ่านทางราง หัวรถจักรฟทำงานที่ความเร็วคงที่ ที่หนึ่ง, สองหรือสี่สปีด
ระบบยังถูกนำมาใช้บนภูเขาสี่ลูก รถไฟใช้ 725-3,000 V at 50 หรือ 60 Hz: (Corcovado Rack ในริโอเดอจาเนโร, บราซิล, Jungfraubahn และ Gornergratbahn ในประเทศสวิสเซอร์แลนด์และ Petit รถไฟ de la Rhune ในประเทศฝรั่งเศส)

การใช้พลังงานไฟฟ้าในโลก

ในปี 2006, 240,000 กิโลเมตร (25% โดยความยาว) ของเครือข่ายรางรถไฟโลกมีกระแสไฟฟ้าในรางและ 50% ของการขนส่งทางรถไฟได้รับการดำเนินการโดยไฟฟ้าลาก

ไม่มีความคิดเห็น:

แสดงความคิดเห็น